ScannerDetector Deamon

Purpose of ScannerDetector

  Scannerdetector process the ethernet raw packets like a firewall. A scanner application scans the ports of a IP by sending ethernet packets to target IP.    A port scan involves an attacker trying many destination ports, usually including some that turn out not to be listening. The purpose of scannerdetector is to detect various TCP based port scan attacks. It log the attacking IPs in a secure log, which is writable only by a special user and root. 


Algorithm of ScannerDetector 
[image: ] 












































Treat Model of ScannerDetector 

 Scanner Signuture 1:  If a packet is comming from same source ip to many diffirent ports within short time, this source ip is attker. 

 Scanner Signuture 2: If a packet is commming to more than one closed ports to same source ip within short time, this IP is attacker. 

  The scanner detector has a treshold time and max storage size, for storing ip’s informations. If scanner packets are sent with large time intervals, the scannerdetector can’t detect the packages. 


Ip Storage Structure of ScannerDetector

 Scanner detector stores the every package in these structures with some time interval and constant storage size.

static struct {
    struct host list[LIST_SIZE];        /* List of source addresses */
    struct host *hash[HASH_SIZE];       /* Hash: pointers into the list */
    int index;                  /* Oldest entry to be replaced */
} state;


/*
 * Information we keep per each source address.
 */
struct host {
    struct host *next;          /* Next entry with the same hash */
    clock_t timestamp;          /* Last update time */
    time_t start;                       /* Entry creation time */
    struct in_addr saddr, daddr;        /* Source and destination addresses */
    unsigned short sport;               /* Source port */
    int count;                  /* Number of ports in the list */
    int weight;                 /* Total weight of ports in the list */
    unsigned short ports[SCAN_MAX_COUNT - 1];   /* List of ports */
    unsigned char tos;          /* TOS */
    unsigned char ttl;          /* TTL */
    unsigned char flags_or;             /* TCP flags OR mask */
    unsigned char flags_and;    /* TCP flags AND mask */
    unsigned char flags;                /* HF_ flags bitmask */
    unsigned char signuture;   // scan detect signuture 
};
  When  storage list of source addreses fill up max value, scannerdetector begins to overwrites oldest of the list. 
Logging of ScannerDetector
  ScannerDetector is compitable with principle of least privileges. ScannerDetector must be run with root privilages to open raw socket in the machine. But, When It opened raw socket, It drops root privilages and forks own.  

  Log file is created on “/home/yusuf” directory with user “yusuf” ownership as read-only. Thus, Anyone except Superuser and user “yusuf” can’t write log file.  If you want to username in program, you can change following in params.h
#define SCANLOGD_USER                   "yusuf"

  Log file has been also protected flooding. Scanner Detector temporarily stop logging if more than
COUNT port scans are detected with no longer than log delay treshold seconds between them.
  Log count treshold and log delay treshold can be changed in params.h with

#define LOG_COUNT_THRESHOLD             5
#define LOG_DELAY_THRESHOLD           2

ScannerDetector Outputs

 Output Like these;

fromIp				Scan Signuture1				Scan Signuture2
port scan: 10.100.93.48 	(Incoming Data to Closed Ports) 	(Incoming More Packages) 
port scan: 10.100.93.46	(Incoming More Packages)
port scan: 10.100.93.45 	(Incoming Data to Closed Ports)


fromIp is the source ıp of attacker. 
Scan Signuture1 and Scan Signuture2  are  which signutures sign the IP,
image1.png

